

Lecture Outline

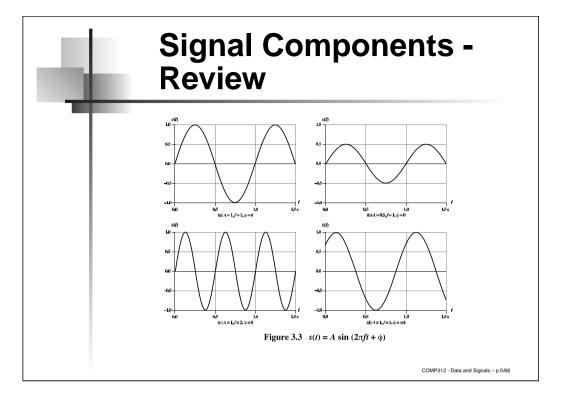
- Analogue Data on Analogue Signals
- Digital Data on Analogue Signals
- Analogue Data on Digital Signals
- Digital Data on Digital Signals

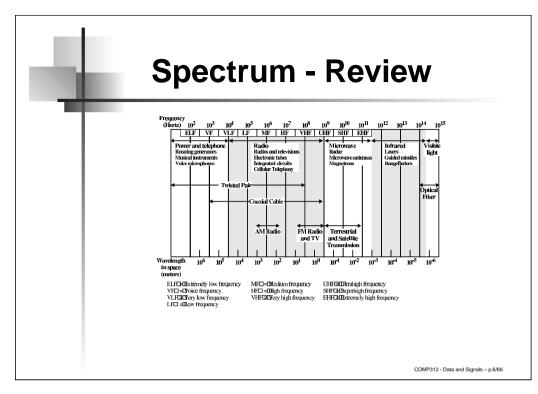
COMP312 - Data and Signals - p.2/66

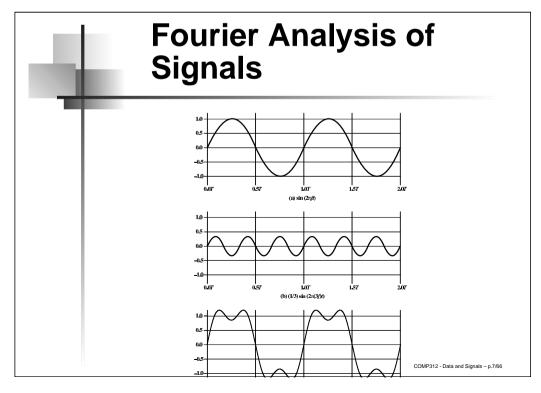
OSI Protocol Model

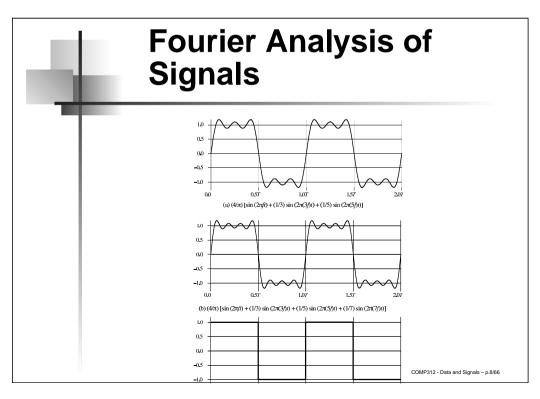
- 7. Application
- 6. Presentation
 - 5. Session
- 4. Transport
- 3. Network
 - 2. Link
- 1. Physical

Working Here


Working Here


COMP312 - Data and Signals - p.3/66


Analogue Data on Analogue Signals


- Analogue Signals -review
- Fourier Analysis
- Modulation
 - Amplitude Modulation
 - Frequency Modulation

COMP312 - Data and Signals - p.4/66

Fourier Series

Periodic Signals

$$x(t) = \frac{A_0}{+} \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$

Where

$$A_0 = rac{2}{T} \int_0^T x(t) dt$$
 $A_0 = rac{2}{T} \int_0^T x(t) \cos(2\pi n f_0 t) dt$
 $B_0 = rac{2}{T} \int_0^T x(t) \sin(2\pi n f_0 t) dt$
 $A_0 = \frac{2}{T} \int_0^T x(t) \sin(2\pi n f_0 t) dt$

Fourier Transform

Aperiodic signals

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}df$$

Inverse:

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}df$$

COMP312 - Data and Signals - n 10/

Discrete Fourier Transform

$$X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n)e^{\frac{-j2\pi kn}{N}}$$

Inverse:

$$x(t) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} X(k) e^{\frac{j2\pi nk}{N}}$$

Fast Fourier Transform

- Discrete Fourier Transform requires $O(N^2)$ complex multiplications
- Fast Fourier Transforms are a class of algorithms that require significantly less computation (often O(NlogN)).
- Choice of algorithm typically depends on N.
- Speedup for typical N is order of 100 times.

COMP312 - Data and Signals - p.11/66

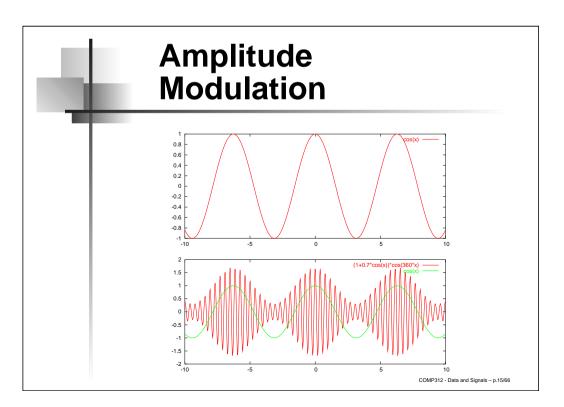
COMP312 - Data and Signals - p.12/66

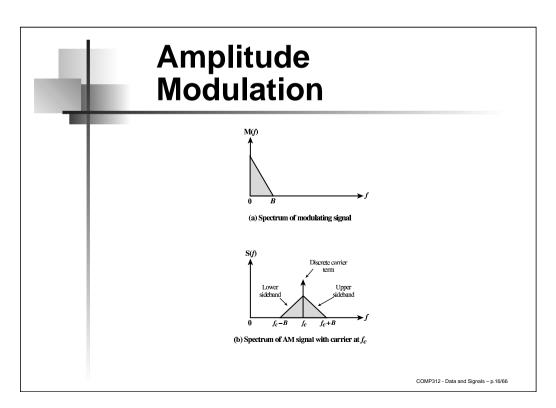
Modulation

Analog signals may be transmitted as is. This is baseband transmission and is used for ordinary telephones.

Often it is useful to transmit signals in a different frequency band. This may be because:

- The medium does not support baseband (e.g. radio).
- There are frequency restrictions.
- Multiple signals are to be transmitted at different frequencies on the same medium

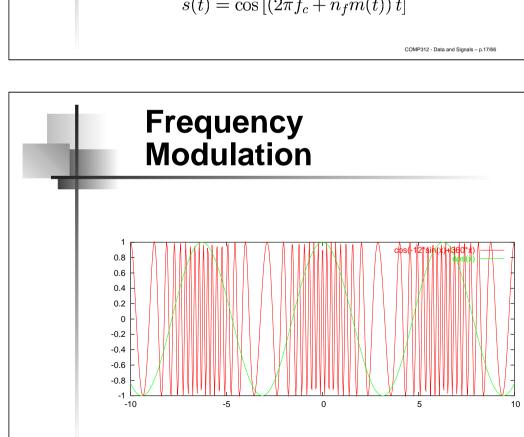

COMP312 - Data and Signals - p.13/


Amplitude Modulation

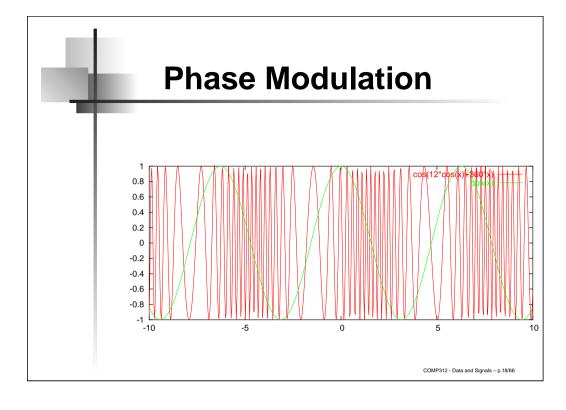
Amplitude Modulation is the carrier wave strength (amplitude) is proportional to (i.e. is multiplied by) the analoge data signal. i.e.

$$s(t) = [1 + n_a x(t)] \cos 2\pi f_c t$$

COMP312 - Data and Signals - p.14/66


Angle Modulation

Phase Modulation is the carrier wave phase is offset by (i.e. is added to) the analoge data signal. i.e.


$$s(t) = \cos\left[2\pi f_c t + n_p m(t)\right]$$

Frequency Modulation is the carrier wave instantaneous frequency is offset by (i.e. is added to) the analoge data signal. i.e.

$$s(t) = \cos\left[\left(2\pi f_c + n_f m(t)\right)t\right]$$

COMP312 - Data and Signals - p.19/66

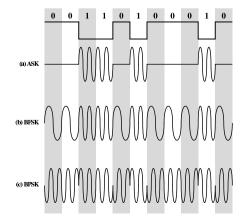
Use of Analogue Modulation

- Broadcast radio and television
- Low cost radio links
- Original analogue telephone trunks

COMP312 - Data and Signals - p.20/66

Digital Data on Digital Signals

- Digital Data
- Digital Modulation Schemes
 - Amplitude Shift Keying
 - Frequency Shift Keying
 - Phase Shift Keying
 - Quadrature Amplitude Modulation
- Chanel Capacity Limits


COMP312 - Data and Signals - p.21/66

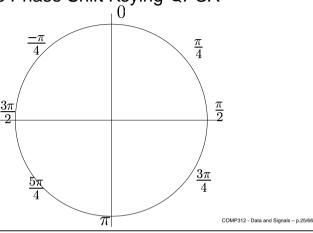
Digital Modulation

- Digital Modulation is required when the medium will not carry (baseband) digital signals. e.g. telephone lines, radio
- Often analogue signals are encoded to digital then modulated onto an analogue carrier. The key advantage of this is the regeneration of digital signals
- The same basic carrier variables used in analogue modulation (amplitude, frequency, phase) can be used in digital modulation.

COMP312 - Data and Signals - p.22/66

Digital Modulation

COMP312 - Data and Signals - p.23/66

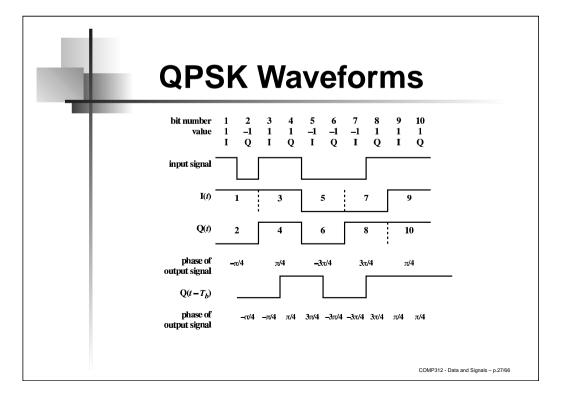

Nyquist

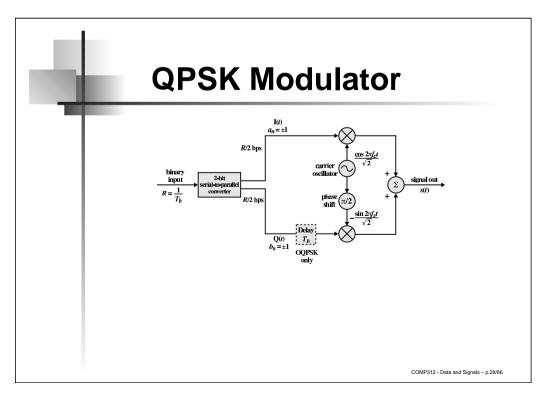
- Nyquist found that that the maximum rate of symbols carried on a channel is twice the bandwidth B.
- For binary symbols the maximum data rate is 2B.
- To increase the bandwidth we need to increase the number of bits per symbol. This is called multi-level signalling

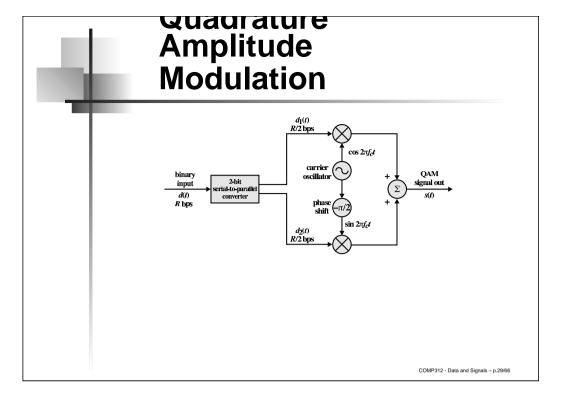
COMP312 - Data and Signals - p.24/66

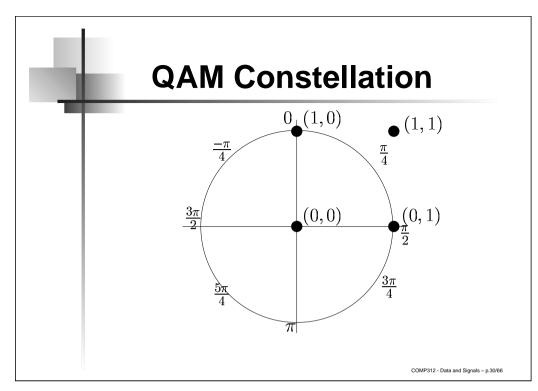
Four Level PSK

Modulation using four different phases is called Quadrature Phase Shift Keying *QPSK*

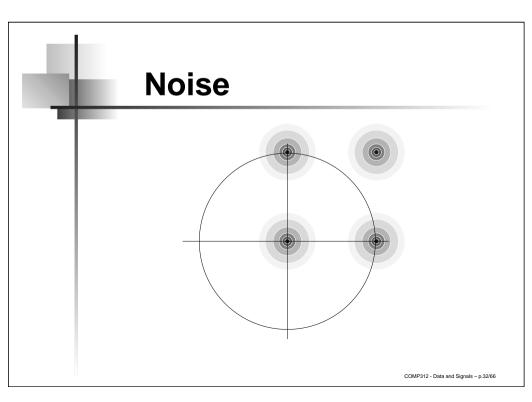



QPSK


$$s(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$


$$s(t) = \frac{1}{\sqrt{2}}I(t)\cos(2\pi f_c t) - \frac{1}{\sqrt{2}}Q(t)\sin(2\pi f_c t)$$

COMP312 - Data and Signals - p.26/66



Capacity

- It would be nice if we could arbitrarily increase the data rate on a channel just by increasing the number of bits per symbol.
- In practice the number of symbols a receiver can distinguish is limited by noise in the channel.
- Noise blurs the received signal and they need to be spaced far enough apart so that different symbols can be distinguished.

COMP312 - Data and Signals - p.31/66

Chanel Capacity Limit

Claude Shannon found a limit on the capacity of a channel in the presence of noise.

$$C = B\log_2(1 + SNR)$$

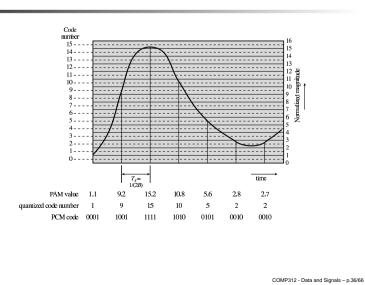
Where:

$$SNR = \frac{signal power}{noise power}$$

Return to ToC

COMP312 - Data and Signals - p.33/66

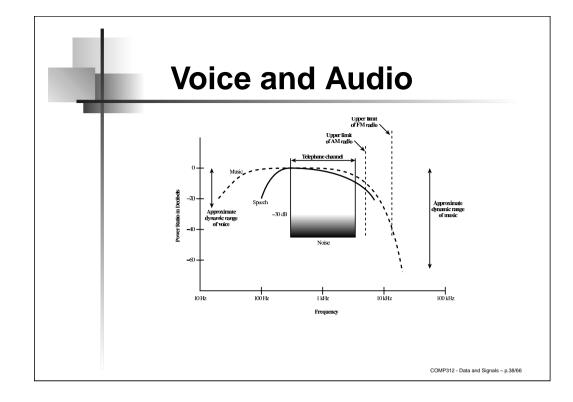
Analogue Data on Digital Signals


- Nyquist Sampling Theorum
- Data Types
 - Voice and Audio
 - Video
 - Data
- Network Performance Parameters
- Interactivity
- Requirements

COMP312 - Data and Signals - p.34/66

Analogue to Digital Conversion

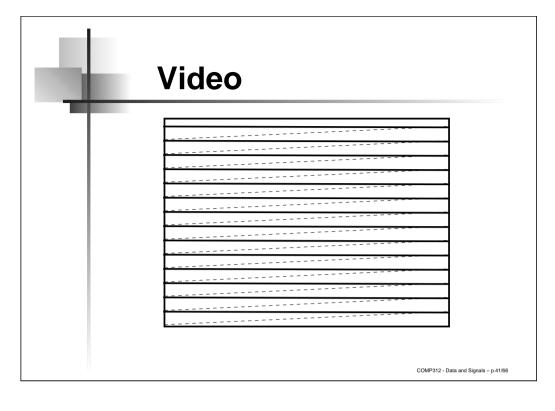
- Analogue signals are continuous in time. Digital data can only represent the signal at discrete points in time.
- The process of measuring the signal at discrete points in time is called *Sampling*.
- The sample is then converted to a (binary) digital value this is known as *Quantisation*.
- Analogue to Digital conversion is a combination of sampling and quantisation.
- The accuracy of the representation depends on the sampling rate and the quantisation


PCM Coding

Nyquist Sampling Theorum

"A signal can be properly reconstructed if it is sampled at a frequency (rate) that is greater than *twice* the highest frequency component of the signal.

COMP312 - Data and Signals - p.37/66



Voice Compression

Codec	Rate	Complexity	Delay	МО
Algorithm	kb/s	MIPS	ms	sco
G.711 PCM	64	<1	.25	4.4
G.726 ADPCM	32	1	.25	4.2
G.728 LD-CELP	16	30	3-5	4.2
G.729a CS ACELP	8	20	20	4.2
G.723.1 ACELP	5.3	18	30	3.6
GSM REP	13.2	4.5	40	3.7

COMP312 - Data and Signals - p.40/66

Television

- Standards include PAL, NTSC, SECAM.
- PAL 625 lines/frame, 25 frames /sec
- Alternate lines belong to two different fields: This is *interlacing*
- Main signal is luminance (B&W) occupies 5.3MHz
- Two chrominance (colour difference) signals occupy 1.3 MHz each
- Sound is sent on a separate channel.

COMP312 - Data and Signals - p.42/66

Video Compression

- Space -Intra Frame
 - Low Delay
 - Editable
 - MJPEG, DV
- Time Inter Frame
 - Better Compression
 - MPEG, H.261

What is Data?

- Numerical or other information represented in a form suitable for processing by computer.
- Most important condideration is whether an error will make a difference.

COMP312 - Data and Signals - p.43/66

Network Performance

Lots of possible measures of performance:

- Bandwidth
- Throughput
- Efficiency
- Utilisation
- Delay
- Delay Variation (Jitter)
- Bit Error Rate
- Frame Error Rate

COMP312 - Data and Signals - p.45/66

Performance Requirements Applications only care about three parameters

Interactivity

Depends on the Network Users

- People
- Computers

Three Situations

- Computer Computer (e.g email, ftp)
- Person Computer (e.g. www, streaming video)
- Person to person (e.g. VoIP, videoconferencing)

Application Requirements - 2

COMP312 - Data and Signals - p.47/66

COMP312 - Data and Signals - p.49/66

Digital Data on Digital Signals

- Applications
- Digital Encoding Schemes
- Scrambling

COMP312 - Data and Signals - p.50/66

Applications

- Modulating an analogue carrier is relatively complex and expensive
- It is simpler to just sent digital signals at baseband frequencies.
- Square waves occupy significant bandwidth due to the sharp corners at transitions
- Digital transmission is suitable for links with plenty of bandwidth where the cost of modem equipment is unwarrented. These are typically short copper connections or fibre optic connections.

COMP312 - Data and Signals - p.51/66

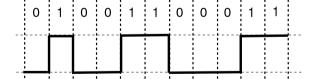
Digital Encoding Scheme Performance

Evaluated in terms of

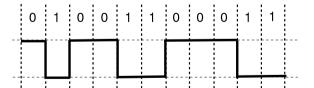
- Spectrum. High frequencies may be attenuated, DC results in power transfer.
- Clocking. Receiver needs to maintain synchronisation with transmitter.
- Error Detection. Can any errors be detected without additional techniques.
- Noise immunity. Will spikes cause errors in the signal.
- Cost/complexity. How difficult are the receiver and transmitter to build.

Digital Encoding Schemes

- Non-Return to Zero Schemes
- Multilevel Schemes
- Biphase Schemes


COMP312 - Data and Signals - p.53/66

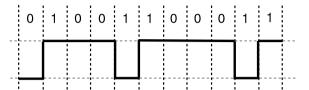
Non-Return to Zero Level


- Voltage levels are constant for each bit period
- Simplest schemes to engineer
- Bandwidth efficient
- Poor noise immunity
- Synchronisation problems with long strings of 1's or 0's

COMP312 - Data and Signals - p.54/66

Non-Return to Zero

Non-Return to Zero Level



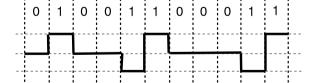
More commonly used in practice.

COMP312 - Data and Signals - p.55/66

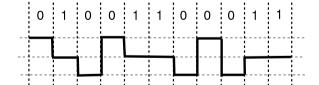
COMP312 - Data and Signals - p.56/66

Non-Return to Zero Invert on Ones

This is Differential Coding - gives greater noise immunity and has no inherent polarity.


COMP312 - Data and Signals - p.57/66

Multilevel Schemes

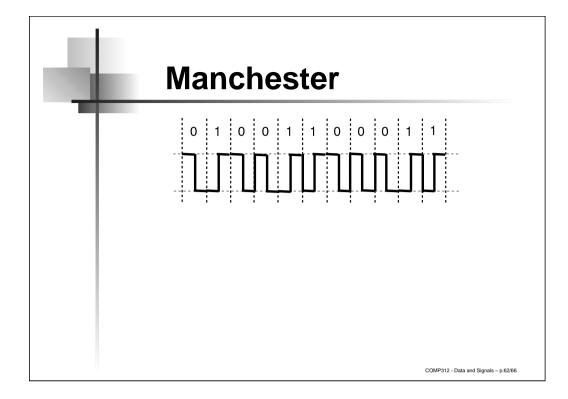

- Have some redundancy can detect some errors
- Are very bandwidth efficient
- Provide synchronisation on "marks" but not on non-marks.
- Worse noise immunity due to multiple levels higher bit error rates.
- More expensive than NRZ codes.

COMP312 - Data and Signals - p.58/66

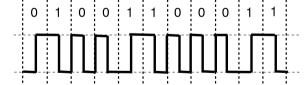
Bipolar Alternate Mark Inversion

Pseudoterary

COMP312 - Data and Signals - p.59/66


COMP312 - Data and Signals - p.60/66

Biphase Schemes

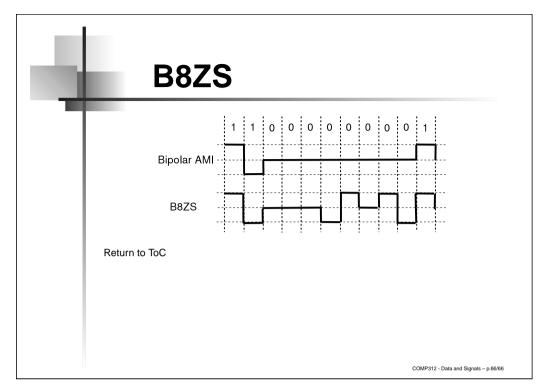

- Always at least one transition per bit period
- Double the bandwidth requirements
- No DC component
- Very good synchronisation
- Greater noise immunity

COMP312 - Data and Signals - p.61/66

COMP312 - Data and Signals - p.63/66

Differential Manchester

■ Provi


Scrambling

- Although biphase codes solve many problems, their bandwidth requirements are undesirable on long distance connections.
- Scrambling removes long strings of constant line levels with transitions.
- Removes potential DC components
- Provides synchronisation
- Can add error detection capability
- May reduce required line rate

COMP312 - Data and Signals - p.64/66

Scrambling Schemes

- NRZ Codes are scrambled by using a mathematical transformation to produce a random looking bit stream with many transitions. The receiver reverses the transformation to produce the original data stream.
- Multilevel schemes can be scrambled by replacing long sequences of non-marks with defined patterns using polarity violations.
- Example is B8ZS based on Bipolar-AMI with replacement of strings of eight zeroes
- Following a positive mark use 000+-0-+

